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On the calculation of wave patterns 
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The calculation of the pattern of waves produced by a point disturbance in a 
steady field which may be non-uniform can be performed straightforwardly by 
a single process of integration along the characteristic rays. For illustration, the 
method is applied to gravity waves produced by a source moving either in a 
straight line or in a circular path, to the symmetrical waves produced by a 
source in an expanding sheet and to the waves resulting from an instantaneous 
disturbance in :I stratified fluid. 

1. Introduction 
Ursell (1960) gave a method for calculating steady wave patterns that arise 

from constant point sources in steady non-uniform flows. He assumed, as we 
do here, that the waves are short compared with the length scale of variations in 
the basic flow. Whitham (1960), in the adjacent paper, showed that Ursell’s 
theory can be regarded as a special case of the kinematic theory of waves. Al- 
though Whitham did not specifically consider the problem of calculating the 
pattern produced by a point disturbance, he applied his methods to calculating 
the Kelvin ship wave pattern in a later paper (Whitham 1961), though the flow 
is uniform in this instance. The aim of the present note is to show how straight- 
forward the calculation of these and more general wave patterns becomes in 
terms of integration along characteristic rays. Oscillatory sources, instantaneous 
sources and the use of general co-ordinate systems are all readily handled. The 
need for the present simplified approach arose in an astrophysical context in 
which it was necessary to calculate wave patterns in self-gravitating systems 
that model disk galaxies. Since the purpose of this note is to illustrate the im- 
provements inherent in the present approach, more familiar and less esoteric 
applications are used as illustrations. 

2. The ray equations 
Pollowing Whitham, we pose the problem as that of determining the phase 

function #(q l ,q f3 ; t )  of the waves, where t is time and q1 and qz are generalized 
spatial oo-ordinates. We shall confine our attention to two-dimensional patterns, 
though the extension of the method to three dimensions is immediate. An equa- 
tion for q5 is normally obtained from the leading terms of an asymptotic approxi- 
mation of the WKBJ type based on the assumption that the waves are short 
and that # is large. Such an approach fulfils Ursell’s desire for a theory that 
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appears as the first stage in a well-defined scheme of successive approximations. 
Further, the equation for 9 is typically a nonlinear first-order partial differential 
equation which we can suppose to be expressed in the form 

w = w(pi,  qi), pa = a+laqi, 0 = - a + p .  (1)  

The pi become the components of a generalized wavenumber when divided by 
the appropriate scale factor hi. 

The standard method for such equations is to integrate along the character- 
istic curves given by the formulae (e.g. Garabedian 1964, p. 32) 

When the disturbance arises from a single point source in space, the character- 
istic rays must all emanate from that point (Ursell’s assumption A). This gives 
initial values for the qi. The time t obtained from integrating equations (2) 
gives the travel time along a ray. As such, it is often the most convenient choice 
for a parameter that labels points on a particular ray. Propagation along a ray 
is at  the group velocity hrlaW/api, and the requirement that t should increase 
along a ray is needed for determining the pattern. This requirement is equivalent 
to a radiation condition that the group velocity, though not necessarily the 
phase velocity, should always be directed away from the source (Lamb 1904). 
The frequency w is seen to be constant on each ray. We shall consider both 
steady oscillatory sources, for which w has some constant value wo throughout 
the pattern, and instantaneous sources, from which rays carrying all possible 
values of w originate. Ranges of initial values of the p’s must also be allowed. 
Equation (1) applied at the source provides a single constraint on the initial 
values of w and pi. Oscillatory and instantaneous sources respectively give one- 
and two-parameter families of initial conditions, and hence of rays forming the 
pattern. 

An important feature of the present approach is that the phase 9 is also ob- 
tained by integration along the rays. Both Ursell and Whitham propose that the 
wave fronts be found after the rays and the wavenumber vector have been 
determined everywhere, by the geometric requirement that surfaces of constant 
phase are orthogonal to the local wavenumber vector. This typically involves a 
quite distinct integration from that along the rays and it is one that may be 
considerably more difficult, especially if the form of the dispersion relation (1)  
is complicated. An additional advantage of the present approach is that the 
value of the phase is determined at  all points rather than just the forms of the 
surfaces of constant phase. 

It can be shown that the phase obtained by integrating along the rays satisfies 
the geometric condition used by Ursell and Whitham; separate discussions are 
needed for oscillatory and instantaneous sources. To obtain the phase 9 at any 
field point A(q,,q,) at time T in the oscillatory case, we integrate from the 
initial value of q5 = - woTl at the source, where T - Tl is the travel time along 
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the ray to A .  It is not necessary to determine Tl because it cancels in the expres- 
sion for q5 obtained by integrating (2) : 

Here 0 denotes the position of the source and q5 + o,T is seen to depend only on 
the location of A ,  as is to be expected. The fact that the integration is to be 
performed along a characteristic is most clearly expressed by writing the formal 
solution of (2) as pi = q ( a ,  t ) ,  qi = Qi(a, t ) ,  where a is any parameter that defines 
an individual characteristic. Then 

The change in q5 due to a small displacement in space of the field point from A to 
A’(% + dq1, q 2  + (522) is 

The first term arises because the characteristic from 0 to A’ has a slightly different 
parameter from that to A ;  the second arises from that part of the displacement 
from A to A’ not accounted for in displacement of the characteristic, and due 
to the possible difference in travel time from 0. Integration by parts gives 

This expression can be simplified by using the fact that (aQj/aa). = 0 because 
q j  is specified at 0 and so is the same for all characteristics. Furthermore, since 
w is everywhere constant, we can differentiate (1) with respect to a to get 

The second step uses (2). When both (6) and (7) are substituted in (5), we see that 

2 

j=1 
dq5 = C pj(A)&j ( 8 )  

for all spatial displacements, not just displacements along characteristics. 
Equation (8) shows that, on a surface of constant phase on which dq5 = 0, the 
displacement vector with components hjdqj is perpendicular to the local wave- 
number vector with components pj /h j .  

When the source is an instantaneous one all the rays start from it at the initial 
instant (taken to be t = 0) with the same value of the phase (taken to be q3 = 0). 
At the field point A at time T, 

The rays now form a two-parameter family, for which w can serve as one para- 
meter; we shall. use a to denote a second independent parameter. The solutions 
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of (2) can be written as pi = &(a, w, t ) ,  qi = Qi(a, w,  t ) .  For a displacement of the 
field point to A' at fixed time T ,  we have 

(10) 

There is now no term corresponding to the second term on the right-hand side 
of (5) since travel times from 0 to A and to A' are the same. We integrate the 
second derivative terms by parts as before and also differentiate (1) with respect 
to w to  give 

Differentiation of (I) with respect to a also gives equation (7) because w is 
independent of a. Substitution of all these formulae into (10) again gives 

for displacements at a fixed time. 

3. Applications 

sion relations of the form 
The first three examples all involve steady sources (w0 = 0) and have disper- 

(13) w = (U+co) .k,  

where k is the wavenumber vector, U is the velocity of an underlying flow and 
c,, is the velocity waves would have if there were no flow. 

3.1. Kelvin's ship wave pattern 

We take axes moving with the source at  the origin, so that the undisturbed flow 
has velocity V in the direction of the x axis. Using Cartesian co-ordinates, 

(14) 

where g is the acceleration due to gravity, k, = p,, k, = pu, k = (pz +pE)*. Both 
k ,  and k,  are constant on each characteristic since there is no explicit dependence 
of w on x and y. Equations (2) give 

0 = Vk,+ (gk)B = 0, 

- -- - ax 
at = v + @,(g/k3)+ - @,(9/k3)* Vk ,  + *(gk)*' 

Integration is immediate since all the denominators are constant, and the 
solution is obtained simply by omitting the a's. The rays are all straight lines 
through 0. We can introduce polar co-ordinates in wavenumber space defined 
by k, = - k cos x, k, = - k sin x; both k and x are then constant on each ray but 
are not independent since (14) requires V cos x = (g/k)B. If we use this relation to 
eliminate k in (15) we obtain 

- VZ$ vz+ 
4g 4g 

x=- (5 cos x - cos 3x), y = - (sin x + sin 3x), 
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which is consistent with the familiar parametric form (with parameter x) for 
the wave fronts (Lamb 1932, $256) .  The phase 4, rather than t ,  is the variable 
along a ray in the integrals (16 ) .  The two quantities are linearly related for each 
ray with 4 = -4Vkt  cosx, which shows that only negative values of $ are 
relevant and that the pattern lies wholly downstream from the source. The 
parameter x can vary in the range - 90" < x < 90". The corresponding rays are 
straight lines pointing downstream and the slope y / x  increases from 0 at x = - 90" 
to 112 J2 at x = - 35" 16', decreases to - 1 /242  at x = 35" 16' and finally increases 
to 0 again at x = 90'. Each direction in the wedge - 2x42  < y < 2242  has two 
rays, one propagating the transverse waves ( -  35" 16' < x < 35" 16') and the 
other propagating the diverging waves (90" >, 1x1 > 35" 16'). 

3.2.  Ship in a circular course of radius R 
It is convenient here to work in polar spatial co-ordinates with origin at the 
centre of the path which rotate with the source at  r = R, 0 = 0. The source is 
supposed to be rotating anti-clockwise with angular velocity 8. We now have a 
spatially non-uniform situation, for which the dispersion relation in the rotating 
frame is w = - r 8 k e  + + = 0. 

The components of the wavenumber vector are IC, = +/ar = p,. and 

(17)  

ke = a$lrae = pe/r, 

and equations (2) for the characteristics give 

The phase 4 is again always negative. The quantity p s ,  which from (17 )  must 
be positive, is constant on each ray and p r  is given by (17)  as 

with the upper or lower choice of sign depending on whether r is increasing or 
decreasing along the ray. 

There are alternative routes to the integration of (18)  and we shall employ 
one that gives an explicit equation for the rays, rather than a parametric one. 
Non-dimensional formulae that can be derived from ( 1  8) are 

where we define r' = r /R  and P = RQ2pO/g. The appropriate solutions of these 
equations are 

Osgn(r'--I) = sin-1(1//3)-sin-l(l/,!?r')+2(P2- 1)+-2(/323'2- 1 ) 4 ,  (21)  

(22)  $sgn(r'- 1 )  = (g/3/SZzR) [(/32- I)*-(,@r'2- I ) + ] .  
41 F L M  53 
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Now p, which must be greater than or equal to 1, is a parameter that is constant 
on a characteristic. There are two characteristics for each value of /3, one travel- 
ling radially outwards and the other travelling inwards. The ingoing ray is 
turned around and reflected smoothly at  r’ = 1/p, where dr’ = 0. The integrals 
of (20) for the reflected rays are found after matching with the ingoing rays to 
be 

8 = 7r - sin-l(1/,8) -sin- 1 ( 1 / pr’) - ~ ( p 2 -  1)t - 2(P2r’2-- I)+, (23) 

4 = (-gp/WR)[(/32- 1)4+(/32r’2-1)6]. (24) 

The present results for the wave fronts agree with those of Stoker (1957, 
chap. S), the pattern being a skewed form of the ordinary Kelvin pattern. Stoker 
found the forms of the wave fronts by a direct application of stationary phase 
arguments, and his parametric equations (8.2.24) can be shown to be equivalent 
to ours. His equations can also be derived more directly by integrating equations 
(18) with respect to t ,  which yields 

r’2 = 1 + Q2t sin a cos a + $Q2t2 cos 2a, 
8 = - a - QZt + t a r 1  [&lt + tan a], (25 )  I $ =  -1Q 2 Pat. 

Here sec a = /3 = Stoker’s 8, Stoker’s K = Qt sec a, and ingoing and outgoing rays 
are given respectively by negative and positive values of sin a. 

The ray treatment does show some interesting new results. The outgoing 
rays for which 1 < /3 6 ($)g form an envelope, which an individual ray touches 
at the point where r‘ = (4P2 - 3)4/2p(p2 - I)&. This envelope or caustic forms the 
outer edge of the pattern, a role played by a single ray in the Kelvin pattern. 
The envelope is initially inclined to the flow at an angle of 19’ 28’ and tangent 
to the ray with /3 = (&4, but thereafter the inclination decreases steadily as the 
outer boundary spirals out to infinity. The rays that form the outer caustic 
carry transverse waves until they touch the caustic, after which they carry 
diverging waves, as do the rays with ,8 > ($)*. These rays with /3 > ($)$ form no 
envelope. The extreme rays are that with p = 1, which spirals outwards, and 
that with /3 = 00, which is the circle r’ = 1. 

The inner boundary of the pattern, on the other hand, is the envelope formed 
by the ingoing rays with p 2 (&$. These carry diverging waves before they 
touch the caustic, and transverse waves thereafter. Individual rays touch the 
envelope at  r‘ = (4p2- 3)+/2/3(p2- 1)t. This envelope, which also is initially 
inclined at  an angle of 19” 28‘, is less steeply inclined thereafter and reaches the 
centre only after infinitely many circuits around it. All ingoing rays are eventually 
reflected, and the reflected rays form no envelope. No rays would reach the centre 
if surface tension were also taken into account, for then the fact that the minimum 
phase velocity is 2(gP/p)+ ensures that no waves can penetrate within a distance 
of 2(gp/pQ2)4 from the centre. Here is the surface tension and p is the density. 

3.3. Xymmetrical capillary waves in a radially expanding sheet 

We consider a thin sheet of thickness h = h&, which is expanding radially, 
h, being a constant. Using Taylor’s (1959) formula lc(ph/p)* for the phase 
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velocity of the dispersive symmetrical waves, we obtain the dispersion relation 
in polar co-ordinates: 

The characteristic equations are 

w = Colc,,+k2(pho/pr)* = 0.  (26) 

dr r2dB - 2r3 dp, 

co + ~ P A ~ ~ O / P ~ P  = 2Pe(pho/Pr)* - (511; + r2p;) (pho/~r)* 
at = 

= @ = -  dP a4 
0 -COPT* 

Again PO is constant, and (26) can be solved for pT to give 

(27) 

where the upper or lower choice of sign is appropriate according to whether r is 
increasing or decreasing along the ray. We shall again derive explicit equations 
for the rays. Integration in terms oft in this instance introduces elliptic functions. 
The equations to be solved are then 

-- ae 2Pe 
dr - ' r2(Cgpr/pho- 4pg/r2)+' 

% - - C o  Pr *+  c; Pr 
dr 2 (K)  - 25!"ho(C~pr/~ho- 4p$/r2)*' 

For definiteness, we consider the problem discussed by Taylor and Ursell of 
a wave source at the point r = R ,  8 = 0 of the sheet. Rays leave this source in all 
directions and are described by 

The rays for which r initially decreases are smoothly reflected at the point 
r = (4phopg/pC;)+, 181 = ~m--sin-l(4~h0p2e/pC~B3)*) with the exception of the 
p0  = 0 ray, which travels directly into the origin. The formulae appropriate to 
the reflected rays are 

The rays fan out from the source and cover the whole sheet in a continuous 
manner and no caustic is formed. Expressions (31) and (33) for 4 are readily 
shown to be equivalent to 

41-2 



644 C. Hunter 

[c.f. Ursell’s equation (4.20)], which shows that q5 increases steadily along each 
ray. Near the source, the curves of constant phase are locally a set of con- 
focal parabolae with foci at the source. 

3.4. Instantaneous source in a stratijed $wid 

As an example of an unsteady pattern, we consider the sudden collapse of a 
tubular region of mixed fluid in an otherwise vertically stratified fluid. This 
problem has been investigated both theoretically and experimentally by Wu 
(1969). If we idealize the mixed region as an instantaneous two-dimensional line 
source the problem becomes amenable to the present methods. We define the 
source line as Ox, with y axis vertical and x axis horizontal. The dispersion relation 
in a Boussinesq approximation is then 

= ~ k , / k ,  NZ = - (g/p)  ap/ay. (35) 

Here p is the undisturbed density and N2 is taken to be constant for simplicity. 
The characteristic equations now yield 

Both the frequency and wavenumber vector are constant on each ray, and the 
rays are all straight lines through 0. A convenient choice of parameters for 
labelling the rays are polar co-ordinates in wavenumber space, defined now by 
k, = k sin x, kv = - k cos x. Each physically distinct wave is included twice if d l  
possible sign combinations are allowed, but if the k choice is replaced by 
sgn (cos x) a continuous representation of all the distinct waves is achieved in 
0 < x < 2n. The solution for the wave pattern is 

} (37) 
x = (Nt/k)cosX IcosxI, y = (Nt/k)sinX lcosxJ = xtanx, 

q5 = -Nt lcosxI tanx = -Nty/x[l +y2/x2]*. 

It is readily seen that each ray carries waves of all lengths and that propagation 
velocities increase with wavelength. The curves of constant phase at any instant 
are also straight lines through 0, as is seen from the second expression for q5 in 
(37). The x axis remains the curve q5 = 0 always, while new wave crests are 
continually formed in both the upward and downward vertical directions after 
successive time intervals of 2n/N. They subsequently swing steadily round 
towards the horizontal. This general prediction is confirmed by Wu’s experi- 
ments, though the finite size of the experimental source clearly introduces 
additional effects. 

4. Comments and conclusions 
The above examples are intended to show the simplicity and directness of the 

present method. Part of the simplicity is due to the fact that at most one spatial 
variable appears explicitly in any dispersion relation. The necessary integrations 
then reduce to quadratures, which can be performed in terms of elementary 
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functions in the chosen examples. It is not difficult to construct similar examples 
in which the quadratures cannot be done in finite terms, or in which the dis- 
persion relation is more general, and such have arisen in the author’s studies. 
However, the present method is readily adaptable to quite general problems, 
for which the system of characteristic equations can be integrated numerically 
step by step. The phase 4 can be used as independent variable, and this allows 
curves at  constant and regular intervals of (p to be readily obtained. The con- 
struction of wave fronts is much more complicated in other methods. Caution 
is necessary when $ is used as independent variable because the phase does not 
necessarily change monotonically along a ray, though it does do so in all the 
examples of 93. No such difficulty arises when t is used as the independent 
variable. A further cautionary remark concerning the phase is that it may 
change discontinuously at a caustic, as it is known to do by an amount $n in the 
ship wave problem. Strictly, a more accurate analysis than the present one is 
needed in the neighbourhood of the caustic. 

This work has been supported in part by the National Science Foundation 
under grant GP-30136. It is contribution No. 60 of the Geophysical Fluid 
Dynamics Institute, Florida State University. 
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